US009407541B2

a2z United States Patent (10) Patent No.: US 9,407,541 B2
Barabash et al. (45) Date of Patent: Aug. 2, 2016
(54) PROPAGATING A FLOW POLICY BY 2013/0124707 Al 5/2013 Ananthapadmanabha et al.
CONTROL PACKET IN A SOFTWARE 2013/0212245 Al 8/2013 Koponen et al.
2013/0219037 Al 8/2013 Thakkar et al.
DEFINED NETWORK (SDN) BASED 2013/0329601 ALl* 12/2013 Yin ..ccccoevvenveenn HO4L 45/02
NETWORK 370/254
2014/0022911 Al* 12014 Sandick HOA4L 43/0811
(71) Applicant: International Business Machines 370/242
Corporation, Armonk, NY (US) 2014/0098669 Al* 4/2014 Garg HOAL 45/38
’ ’ 370/235
(72) Inventors: Katherine Barabash, Haifa (IL); Yaniv 2015/0244605 AL* $2015 Grandi oo HO4L347‘(5);242§
Ben-Itzhak, Kiryat-yam (IL); Rami 2015/0280927 AL* 10/2015 Liang ..o HO4L 45/38
Cohen, Haifa (IL) 370/259
(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US) McKeon, N. et al., “OpenFlow: enabling innovation in campus net-
(*) Notice: Subject to any disclaimer, the term of this works,” ACM SIGCOMM Computer Communication Review vol.
patent is extended or adjusted under 35 ?{8"5‘:)110&2,11\)/? 6t9-z4"‘2(? 08'_ cent undates f frwaredefined net
eitblatt, . et al, onsistent up €S Ior so. are-acnned net-
US.C. 154(b) by 127 days. works: Change you can believe in!,” In Proc.of 10th ACM Workshop
. on Hot Topics in Networks, ACM, 2011, 6 p.
(21) Appl. No.: 14/260,305 Foster, N. et al., “Frenetic: A network programming language,” In
. ACM SIGPLAN Notices vol. 46, No. 9, pp. 279-291, ACM, 2011.
(22) Filed: Apr. 24,2014 Canini, M. et al. “A Nice way to test OpenFlow applications,” In Proc.
. N 9th USENIX Sym. on Networked Systems Design and Implementa-
(65) Prior Publication Data tion, NSDI * 12, Apr. 25-27, 2012, 14 p.
US 2015/0312142 A1l Oct. 29, 2015 Voellmy, A. et al., “Scalable Software Defined Network Controllers,”
In Proc. of ACM SIGCOMM 2012 Conf. on Applications, Technolo-
(51) Int.CL gies, Architectures, and Protocols for Computer Communications,
HO4L 12/00 (2006.01) ACM, 2012, 2 p. .
HO4L 12/721 (2013.01) (Continued)
HO4L 12/717 (2013.01)
HO4L 12/725 (2013.01) Primary Examiner — John Blanton
(52) US.CL
CPCcccceee. HO4L 45/38 (2013.01); HO4L 45/42 (57) ABSTRACT
. . (2.013'01); HO4L 45/306 (2013.01) Propagating a flow policy within a software defined network
(58) Field of Classification Search (SDN) includes sending a route path request for a flow from
CPC RTINS H04L 45/42 a first forwarding node to an SDN controller of the SDN,
See application file for complete search history. receiving route path information specifying a route path for
(56) Ref Cited the flow from the SDN controller, and generating, using a
eferences Cite

U.S. PATENT DOCUMENTS

8,521,905 B2
2013/0010803 Al

8/2013 Beliveau et al.
1/2013 Yamaguchi

processor of the first forwarding node, a control packet
including the route path. The control packet is communicated
from the first forwarding node to a second forwarding node.

17 Claims, 4 Drawing Sheets

SDN
Controller
110 115

Forwarding
Node
125

End
Node
135

Forwarding
Node
130

Determine
Toute path
information
310

Generate control

315

[—155—»|

Update flow table
335

55—
——155—»

US 9,407,541 B2

Page 2
(56) References Cited Huang, D. et al., “High-Fidelity Switch Models for Software-Defined
Network Emulation,” In Proc. of 2nd ACM SIGCOMM Workshop on
OTHER PUBLICATIONS Hot Topics in Software Defined Networking, pp. 43-48, acm, 2013.

Voellmy, A. et al., “Scaling Software-Defined Network Controllers
on Multicore Servers,” Yale Univ. Dept. of Computer Science, Jul.
2012,22p. * cited by examiner

U.S. Patent Aug. 2, 2016 Sheet 1 of 4 US 9,407,541 B2

(" Control Forwarding Control
Packet Node Packet | [Forwarding
/\ 150-2 125 150-1 Node
. 120
Forwarding Packet(s)
Node 155
130
Route Path
Information
Network 145
105
End Node Start Node
(Client) Route Path (Client)
135 Request 115
140
SDN
Controller
FIG. 1 110
Display Pointing Network
Ke}zf‘t;((;ard Device Device Adapter
235 240 245
yy Y
v ~ 215 v
Processor Memorg lEolements
205
Local Bulk Storage
Memory Device
220 225
200
s A N

SDN Module
250

FIG. 2

U.S. Patent Aug. 2, 2016 Sheet 2 of 4 US 9,407,541 B2

SDN Start Forwarding Forwarding Forwarding End
Controller Node Node Node Node Node
110 115 120 125 130 135
——305—»
140
Determine
route path
information
310
145 >
Generate control
packet
315
]
Update flow
table
320
——150-1—»
Update flow table
325
|
Modity control
packet
330
——150-2—»
Update flow table
335
———1 55—
155—»
———155—»

FIG.3

U.S. Patent Aug. 2, 2016 Sheet 3 of 4 US 9,407,541 B2

150-1

Transport
Header

IP Header Payload

Ethernet | Src | Dst | Src | Dst | Start [1% 2nd 3d | End
Header IP IP | Port | Port | IP | Hop | Hop | Hop | IP

P, | TP, [5077| 40 |1Pyae | TP, | TP, | TPy | TPeng

Transport

IP Header Header

Payload

Ethernet | Src | Dst | Src | Dst | Start [1% 2nd 3d | End
Header IP IP | Port | Port | IP | Hop | Hop | Hop | IP

P, | IP; [5077| 40 |TPyae | TP, | TPy | TIP3 | TPenq

FIG. 4B

U.S. Patent

500

Aug. 2, 2016 Sheet 4 of 4

SDN controller receives a
route path request for a flow
from a forwarding node of
the SDN

505

00

Forwarding node sends route
path request for a flow to
SDN controller

605

h 4

h 4

SDN controller determines
route path information for
the flow responsive to
receiving the route path
request
510

Forwarding node receives
route path information for
the flow from SDN
controller
610

A 4

h 4

SDN controller
communicates route path
information to the
forwarding node
515

Forwarding node generates a
control packet for the flow
specifying route path
information

615

h 4

FIG. 5

Forwarding node updates
internal flow table
620

h 4

Forwarding node
communicates control
packet to a next forwarding
node of the route path

625

FIG. 6

US 9,407,541 B2

US 9,407,541 B2

1
PROPAGATING A FLOW POLICY BY
CONTROL PACKET IN A SOFTWARE
DEFINED NETWORK (SDN) BASED
NETWORK

BACKGROUND

A software-defined network (SDN) is an adaptable archi-
tecture for a network in which data routing decisions are
decoupled from the particular network nodes that perform the
data transfers. The network nodes of the SDN responsible for
making decisions about data routing form the “control plane.”
The network nodes of the SDN responsible for forwarding the
data form the “data plane.” An abstraction layer is typically
included through which the SDN may be administered. The
abstraction layer hides lower level functionality and details of
the underlying network infrastructure. As such, SDNs are
highly adaptable. For example, a network administrator may
directly program aspects of the SDN including, but not lim-
ited to, network control, network configuration, and other-
wise centrally manage the SDN.

An SDN controller is the network node tasked with deter-
mining a route path for data packets of a “flow.” The SDN
controller is part of the control plane of the SDN. The route
path determined by the SDN controller specifies the particu-
lar network nodes and ordering of such network nodes
through which data packets of a given flow will pass when
communicated from a start node to an end node of the flow.
The SDN controller is tasked with communicating the route
path for the flow to each of the network nodes of the route
path. As such, control information is kept within the control
plane as a series of communications that occur between the
SDN controller and each network node of the route path for
the flow. Responsive to receiving route path information for a
flow from the SDN controller, each recipient network node
updates an internal flow table with the instructions received
from the SDN controller. The instructions specify how the
recipient network nodes are to process data packets belonging
to the flow.

When the start node receives instructions from the control-
ler, the start node begins sending data packets of the flow over
the data plane of the SDN to the next network node specified
in the route path. In general, control plane communications
refer to the exchange of control information between the SDN
controller and a data forwarding node, between the SDN
controller and a start node, or between the SDN controller and
the end node. Data plane communications refer to the
exchange of data for a flow between start node and a forward-
ing node, between two forwarding nodes, or between a for-
warding node and the end node.

In some cases, data packets of the flow may be received by
anetwork node, e.g., a forwarding node, prior to that network
node receiving instructions from the SDN controller indicat-
ing how to process the data packets. Any of a variety of
different errors and/or delays may occur in such a situation
including, for example, data packets arriving at the end node
out of order. The SDN architecture does not guarantee con-
sistent handling of data packets belonging to a same flow.

SUMMARY

In one aspect, a method includes receiving, from a first
forwarding node of a software defined network (SDN), a
route path request for a flow and, responsive to the route path
request, determining route path information specifying a
route path for the flow using a processor of an SDN controller.

10

15

20

25

30

35

40

45

50

55

60

65

2

The method further includes communicating the route path
information from the SDN controller only to the first forward-
ing node.

In another aspect, a method includes sending a route path
request for a flow from a first forwarding node to an SDN
controller of an SDN, receiving route path information speci-
fying a route path for the flow from the SDN controller, and
generating, using a processor of the first forwarding node, a
control packet specifying the route path. The method further
includes communicating the control packet from the first
forwarding node to a second forwarding node.

In another aspect, a system includes a processor pro-
grammed to initiate executable operations. The executable
operations include sending a route path request for a flow
from a first forwarding node to an SDN controller of an SDN,
receiving route path information specitying a route path for
the flow from the SDN controller, and generating a control
packet specifying the route path. The executable operations
also include communicating the control packet from the first
forwarding node to a second forwarding node.

In still another aspect, a computer program product
includes a computer readable storage medium having pro-
gram code stored thereon. The program code is executable by
a processor to perform a method. The method includes send-
ing aroute path request for a flow from a first forwarding node
to an SDN controller of an SDN using a processor of the first
forwarding node, receiving route path information specifying
a route path for the flow from the SDN controller using the
processor of the first forwarding node, and generating a con-
trol packet specifying the route path using the processor of the
first forwarding node. The method further includes commu-
nicating the control packet from the first forwarding node to a
second forwarding node using the processor of the first for-
warding node.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example of a
communication system.

FIG. 2 is a block diagram illustrating an exemplary archi-
tecture for a network node.

FIG. 3 is a message flow diagram illustrating an exemplary
use of a control packet for establishing a route path for a flow
according to a flow policy within a software defined network
(SDN).

FIGS. 4A and 4B are block diagrams illustrating exem-
plary control packets.

FIG. 5 is a flow chart illustrating an exemplary method of
propagating a flow policy within an SDN.

FIG. 6 is a flow chart illustrating another exemplary
method of propagating a flow policy within an SDN.

DETAILED DESCRIPTION

While the disclosure concludes with claims defining novel
features, it is believed that the various features described
herein will be better understood from a consideration of the
description in conjunction with the drawings. The
process(es), machine(s), manufacture(s) and any variations
thereof described within this disclosure are provided for pur-
poses of illustration. Any specific structural and functional
details described are not to be interpreted as limiting, but
merely as a basis for the claims and as a representative basis
for teaching one skilled in the art to variously employ the
features described in virtually any appropriately detailed
structure. Further, the terms and phrases used within this

US 9,407,541 B2

3

disclosure are not intended to be limiting, but rather to pro-
vide an understandable description of the features described.

This disclosure relates to software defined networks
(SDNs) and, more particularly, to propagating a flow policy
within an SDN. In accordance with the inventive arrange-
ments disclosed herein, a flow policy is propagated and/or
established using a control packet. A start node begins a flow
directed to an end node. In doing so, the start node initiates the
flow by communicating with a network node, referred to as a
forwarding node, of the SDN. The forwarding node, in turn,
sends a route path request for the flow to an SDN controller.
The SDN controller determines a route path for the flow and
sends the route path to the forwarding node. The forwarding
node generates a control packet including the route path and
communicates the control packet to a next forwarding node
specified by the route path. The control packet, which
includes and/or specifies the route path, is communicated
from the forwarding node along the route path through the
data plane of the SDN to each of the other forwarding nodes
specified by the route path. Each forwarding node that
receives the control packet updates the flow table stored
therein in accordance the received control packet.

The forwarding node sends the control packet to the next
forwarding node prior to sending any other data packet of the
flow, e.g., data packets. Accordingly, each of the forwarding
nodes of the route path is able to update the flow table stored
therein with instructions dictating how to process received
data packets for the flow. The instructions are guaranteed to
be received by the various forwarding nodes of the route path
prior to any data packets of the flow. As such, per-flow con-
sistency is guaranteed and out of order data packets for the
flow are avoided. Further details are described below with
reference to the drawings.

For purposes of simplicity and clarity of illustration, ele-
ments shown in the figures have not necessarily been drawn to
scale. For example, the dimensions of some of the elements
may be exaggerated relative to other elements for clarity.
Further, where considered appropriate, reference numbers
are repeated among the figures to indicate corresponding,
analogous, or like features.

FIG. 1 is a block diagram illustrating an exemplary com-
munication system 100. Communication system 100 is a
networked system. In one aspect, communication system 100
is implemented as an SDN. Communication system 100
includes a plurality of network nodes communicatively
linked by a network 105. The network nodes include an SDN
controller 110, a start node 115, forwarding nodes 120, 125,
and 130, and an end node 135.

Network 105 is the medium used to provide communica-
tion links between the various network nodes connected
together within communication system 100. Network 105
may include connections, such as wire, wireless communica-
tion links, or fiber optic cables. Network 105 may be imple-
mented as, or include, any of a variety of different communi-
cation technologies such as a Wide Area Network (WAN), a
Local Area Network (LAN), a wireless network, a mobile
network, a Virtual Private Network (VPN), the Internet, the
Public Switched Telephone Network (PSTN), or the like.

In general, each network node may represent a data pro-
cessing system such as a switch, a router, a computer, or the
like. SDN controller 110, for example, may be implemented
as a server. Start node 115 and end node 135 may be imple-
mented as computing systems, mobile computing and/or
communication systems, or the like. For example, start node
115 and end node 135 each may be implemented as a client
system that communicate using a flow. Forwarding nodes
120, 125, and 130 each may be implemented as a switch, a

10

15

20

25

30

35

40

45

50

55

60

65

4

router, a server, or the like. In one aspect, one or more of start
node 115, end node 135, or forwarding nodes 120, 125, and/or
130 may be implemented as virtual machines executing
within a host data processing system or two or more different
host data processing systems. Any network node that is part of
a route path and not an SDN controller, not a start node that
initiates a flow, and not an end node that is the endpoint of the
flow is considered a forwarding node.

For purposes of discussion and illustration, start node 115
is communicatively linked to forwarding node 120. Similarly,
end node 135 is communicatively linked to forwarding node
130. In this regard, forwarding node 120 provides start node
115 with access to network 105. Similarly, forwarding node
130 provides end node 135 with access to network 105.

In operation, start node 115, e.g., a client system, initiates
a flow to end node 135. In general, a “flow” is a conversation
and/or exchange of data between two endpoints such as start
node 115 and end node 135. Each pair of endpoints may be
engaged in one or more different and active flows. As defined
within this disclosure, a “tlow” means one or more packets
having a same flow identifier. The flow identifier typically is
specified in a header portion of a packet by the communicat-
ing endpoints. The particular data items used to form the flow
identifier may vary across devices, network technologies,
according to desired granularity, and/or the like. In illustra-
tion, a flow identifier having coarse granularity may utilize an
address of the sender and an address of the receiver. For
example, the flow identifier may be a combination of the
Internet Protocol (IP) address for start node 115 and the IP
address for end node 135. In another illustration, a flow iden-
tifier with finer granularity may include more than one header
such as a TCP/IP 5-tupple including the MAC addresses of
the start and end nodes, the source and endpoint IP addresses,
protocol used, and port information.

Start node 115 initiates a flow directed to end node 135 by
communicating with forwarding node 120. For example, start
node 115 communicates one or more of data packets 155 to
forwarding node 120. Responsive to start node 115 initiating
the flow, forwarding node 120 communicates a route path
request 140 for the flow to SDN controller 110. Route path
request 140 specifies start node 115 and end node 135. In
addition, route path request 140 may include one or more
other attributes.

In one aspect, communication system 100 and, more par-
ticularly, the SDN, may provide additional services beyond
delivery of packets from start node 115 to end node 135.
These additional, or more advanced, services may include,
but are not limited to, Quality of Service (QoS), resiliency,
security, multipath, other policy attributes and/or the like.
These advanced services may be implemented within, or by,
SDN controller 105 and/or forwarding nodes 120, 125, and/or
130. Start node 115, in initiating the flow with forwarding
node 120, may request one or more of such services to be used
for the flow. Accordingly, forwarding node 120 may include
within route path request 140 one or more attributes indicat-
ing the particular services to be used for the flow as requested
by start node 115.

SDN controller 110, responsive to receiving route path
request 140, determines route path information 145 for the
flow. Route path information 145 includes a route path. The
route path specifies an ordered set of one or more network
nodes, that each data packet of the flow will travel in moving
from start node 115 to end node 135. More particularly, SDN
controller 110 determines one or more forwarding nodes, i.e.,
an ordered set of forwarding nodes, through which data pack-
ets 155 of the flow will travel in order to move from start node
115 to end node 135. In this example, a route path included in

US 9,407,541 B2

5

route path information 145 specifies start node 115, forward-
ing node 120, forwarding node 125, and forwarding node 130
leading to end node 135. SDN controller 110 sends route path
information 145 to forwarding node 120. Thus, in this
example, route path information 145 specifies that the flow
will travel from start node 115 to forwarding node 120, to
forwarding node 125, to forwarding node 130, and on to end
node 135.

In another aspect, SDN controller 110 may determine any
services specified by route path request 140. In that case, SDN
controller 110 includes any attributes and/or instructions
within route path information 145 that are needed to direct
forwarding nodes 120, 125, and 130 of the route path to
implement the requested services. As such, if supported, route
path information 145 may specify the advanced services to be
used by forwarding nodes 120, 125, and/or 130 in processing
the flow. For example, route path information 145 may
include instructions for forwarding nodes to perform opera-
tions such as rewriting, modifying, and/or augmenting data
packetheaders to specify fields that may be consumed or used
by one or more other forwarding nodes of the route path,
matching instructions to be performed against the fields in the
data packet headers for forwarding nodes of the route path,
instructions for updating internal flow tables of the forward-
ing nodes of the route path, and/or the like.

Unlike conventional SDN architectures, SDN controller
110 does not communicate route path information 145 relat-
ing to the flow initiated by start node 115 to any forwarding
node other than forwarding node 120. For example, SDN
controller 110 does not communicate route path information
145 to forwarding node 125 or to forwarding node 130 when
setting up the flow. Similarly, SDN controller 110 does not
communicate route path information 145 to start node 115 or
to end node 135. As illustrated in FIG. 1, SDN controller 110
only provides route path information 145 to the particular
network node that issued route path request 140, which is
forwarding node 120 in this example. In some cases, however,
SDN controller 110 may communicate with a particular type
of network node that is capable of modifying the route path as
will be described in further detail within this specification.

Forwarding node 120, responsive to receiving route path
145 from SDN controller 110, generates control packet 150-
1. Control packet 150-1 includes, or specifies, at least a por-
tion of route path information 145 or a derivative or modifi-
cation thereof. For example, control packet 150-1 may
specify the route path, i.e., the ordered set of forwarding
nodes, any attributes for advanced services to be performed,
instructions for updating flow tables, instructions for process-
ing packets and/or header information as previously
described, etc. In one aspect, control packet 150-1 includes
route path information 145 within a payload portion of con-
trol packet 150-1. In another aspect, control packet 150-1
includes route path information 145 in an encapsulated form
allowing each forwarding node to read and/or remove needed
information from the control packet and/or remove an encap-
sulation layer prior to sending the control packet, or a modi-
fied version thereof, to a next network node of the route path.

Forwarding node 120 updates an internally stored flow
table according to route path information 145 so that other
packets of the flow will be sent to the next node in the route
path. In this example, the next node of the route path is
forwarding node 125. Forwarding node 120 further commu-
nicates control packet 150-1 to forwarding node 125. For-
warding node 125 evaluates control packet 150-1 and updates
an internally stored flow table based upon the route path
information 145 specified by control packet 150-1. Forward-
ing node 125, as a result of updating the internally stored flow

10

15

20

25

30

35

40

45

50

55

60

65

6

table, is configured to forward packets of the flow to the next
network node of the route path, which is forwarding node
130. Forwarding node 125 updates and/or modifies control
packet 150-1, thereby generating control packet 150-2. For-
warding node 125 communicates, or forwards, control packet
150-2 to forwarding node 130. As noted, in one aspect, only
the residual or remaining nodes of the route path may be
included or specified by control packet 150-2 as opposed to
portions of the route path already traversed such as start node
115 and/or forwarding node 120.

Forwarding node 130 evaluates control packet 150-2 and
updates an internally stored flow table based upon the
received route path specified by control packet 150-2. For-
warding node 130 determines that no further forwarding
nodes are specified for the route path and, as such, does not
send a control packet to end node 135. Forwarding node 130,
however, is programmed, or configured, to send data packets
155 of the flow to end node 135.

Subsequent to forwarding node 120 sending control packet
150-1 to forwarding node 125, forwarding node 120 may
begin sending one or more of data packets 155 of the flow as
received from start node 115. Data packets 155 of the flow,
however, are not sent by forwarding node 120 until after
control packet 150-1 is sent. As described in further detail
within this disclosure, control packet 150-1 is sent over the
data plane of the SDN. Sending control packet 150-1 over the
data plane prior to sending any data packets of the flow
ensures that consistency in application of any policy for data
packets 155 of the flow is observed. In particular, control
packets propagate through the forwarding nodes preceding
any data packets of the flow. As illustrated in FIG. 1, data
packets 155 are sent from start node 115 to end node 135 via
the established route path.

Thus, data packets 155 travel from start node 115, to for-
warding node 120, to forwarding node 125, to forwarding
node 130, through to end node 135. Each of forwarding nodes
120, 125, and 130 processes data packets 155 in accordance
with the particular instructions for the flow corresponding to
that forwarding node as specified by received route path infor-
mation 145. Forwarding node 120 receives route path infor-
mation 145 directly from SDN controller 110. Forwarding
node 125 receives route path information 145 from forward-
ing node 120 via control packet 150-1. Forwarding node 130
receives route path information 145 from forwarding node
125 via control packet 150-2.

Communication system 100 is provided for purposes of
illustration only. A communication system may include addi-
tional network nodes, whether switches, routers, data pro-
cessing systems, virtual machines, or the like, or fewer of
network nodes. Further, while the example of FIG. 1 has been
described with the control packet including route path infor-
mation, in another example, the control packet may also
include actual data of the flow.

FIG. 2 is a block diagram illustrating an exemplary archi-
tecture 200 for a network node. Architecture 200 may be used
to implement any of a variety of different network nodes as
described with reference to FIG. 1. For example, architecture
200 may be used to implement a router, a switch, a computer,
including a client, a server, or the like. More particularly,
architecture 200 illustrated in FIG. 2 may be used to imple-
ment SDN controller 110, start node 115, end node 135, or
any of the various forwarding nodes described with reference
to FIG. 1.

Architecture 200 includes at least one processor (e.g., a
central processing unit) 205 coupled to memory elements 210
through a system bus 215 or other suitable circuitry. As such,
a network node having architecture 200 can store program

US 9,407,541 B2

7

code within memory elements 210. Processor 205 executes
the program code accessed from memory elements 210 via
system bus 215 or the other suitable circuitry.

In one aspect, architecture 200 is implemented as a pro-
grammable data processing apparatus that is suitable for stor-
ing and/or executing program code. It should be appreciated,
however, that architecture 200 can be used to implement any
network node and/or system including a processor and
memory that is capable of performing and/or initiating the
functions and/or operations described within this disclosure.
Further, architecture 200 can be used to implement a network
node and/or system having any of a variety of different form
factors.

Memory elements 210 include one or more physical
memory devices such as, for example, local memory 220 and
one or more bulk storage devices 225. Local memory 220
refers to random access memory (RAM) or other non-persis-
tent memory device(s) generally used during actual execution
of'the program code. Bulk storage device(s) 225 can be imple-
mented as a hard disk drive (HDD), a solid state drive (SSD),
or other persistent data storage device. Architecture 200 also
can include one or more cache memories (not shown) that
provide temporary storage of at least some program code in
order to reduce the number of times program code must be
retrieved from bulk storage device 225 during execution. It
should be appreciated that memory elements 210 may include
any of a variety of different computer readable storage media.

Input/output (I/O) devices such as a keyboard 230, a dis-
play device 235, and a pointing device 240 optionally can be
coupled to architecture 200. The I/O devices can be coupled
to architecture 200 either directly or through intervening I/O
controllers. One or more network adapters 245 also can be
coupled to architecture 200 to enable a network node using
architecture 200 to become coupled to other network nodes
such as other computer systems, remote printers, and/or
remote storage devices through intervening private or public
networks. Modems, cable modems, wireless transceivers,
and Ethernet cards are examples of different types of network
adapters 245 that can be used with architecture 200.

As pictured in FIG. 2, memory elements 210 can store an
SDN module 250. SDN module 250, being implemented in
the form of executable program code, is executed by a net-
work node using architecture 200 and, as such, is considered
an integrated part of any such system. In the case where
architecture 200 is used to implement an SDN controller,
SDN module 250 includes the program instructions that,
when executed, cause the network node to perform the vari-
ous operations described within this disclosure for an SDN
controller. In the case where architecture 200 is used to imple-
ment a start node or an end node, e.g., a client, SDN module
250 includes the program instructions that when executed,
cause the network node to perform the various operations
described within this disclosure for a start node and/or an end
node. In the case where architecture 200 is used to implement
a forwarding node, SDN module 250 includes the program
instructions that when executed, cause the network node to
perform the various operations described within this disclo-
sure for a forwarding node.

Forwarding nodes store a flow table (not shown) within
memory elements 210. A forwarding node using architecture
200, under control of SDN module 250, updates the flow table
in accordance with information specified within a received
control packet from another forwarding node or in accor-
dance with route path information received directly from the
SDN controller as described within this disclosure. For
example, an existing entry in the flow table corresponding to
the flow may be updated or a new entry in the flow table for the

10

15

20

25

30

35

40

45

50

55

60

65

8

flow may be created. It should be appreciated that SDN mod-
ule 250, including any parameters and/or attributes utilized
by SDN module 250 such as route path information, a control
packet, and/or a flow table, are functional data structures that
impart functionality when employed as part of a network
node and/or system utilizing architecture 200.

FIG. 3 is a message flow diagram illustrating an exemplary
use of a control packet for establishing a route path for a flow
according to a flow policy within an SDN. FIG. 3 illustrates
messaging that occurs between network nodes of an SDN in
establishing a flow and various operations performed by the
network nodes. FIG. 3 begins in a state where start node 115
initiates a flow to end node 135 by sending communication
305 to forwarding node 120. In one aspect, communication
305 specifies start node 115, end node 135, and/or data pack-
ets 155. Communication 305 further may include attributes
requesting one or more services for the flow. As discussed,
forwarding node 120 may provide start node 115 with access
to network communications.

Responsive to communication 305, forwarding node 120
sends route path request 140 for the flow to SDN controller
110. Routing path request 140 is sent over the control plane of
the SDN. Route path request 140 specifies start node 115 and
end node 135, e.g., IP addresses for the start and end nodes for
the flow. Further, route path request 140 may include one or
more attributes relating to the services to be applied to the
flow as requested by start node 115.

SDN controller 110 receives route path request 140.
Responsive to receiving route path request 140, SDN control-
ler 110 determines route path information 145 for the flow in
block 310. Route path information 145, as determined by
SDN controller 110, includes or specifies start node 110, end
node 135, one or more forwarding nodes such as forwarding
nodes 120, 125, and 130, and an ordering of the network
nodes forming the route path. As part of route path informa-
tion 145, SDN controller 110 further may include one or more
attributes and/or instructions for the flow. Attributes and/or
instructions may be specified within route path information
145 on a per-forwarding node basis. SDN controller 110
sends route path 145 to forwarding node 120. SDN controller
110 sends route path information 145 over the control plane
of'the SDN directly to forwarding node 120.

Responsive to receiving route path information 145, for-
warding node 120 generates control packet 150-1 in block
315. In general, forwarding node 120 sends control packet
150-1 along the route path determined by SDN controller
110. One or more control packets specifying route path infor-
mation 145, or a derivative thereof, traverse the route path
over the data plane of the SDN. In one aspect, control packets
such as control packet 150-1 and/or 150-2 include the same
header or header information that will be included in data
packets 155 for the flow. As such, the decisions of any for-
warding nodes of the route path having an ability to make a
decision whether to pass a data packet 155 of the flow, block
a data packet 155 of the flow, or divert a data packet 155 of the
flow based upon header information may be observed in how
the control packets are handled and/or processed.

In block 320, forwarding node 120 updates a flow table
stored in memory therein. The flow table stored within for-
warding node 120 is updated with any instructions included in
route path 145 that indicate how forwarding node 120 is to
process data packets 155 of the flow. As used herein, the
phrases “updating the flow table,” “update the flow table,” or
variants thereof, as performed by a forwarding node, refer to
a process performed responsive to receiving a control packet
and/or route path information 145. Updating means that the

US 9,407,541 B2

9

forwarding node searches for an entry in the flow table that
matches the received control packet.

For example, the forwarding node determines a flow iden-
tifier from the received control packet or from received route
path information 145. The forwarding node searches for an
entry in the flow table having a matching flow identifier. If the
forwarding node locates a matching entry, the forwarding
node updates the matching entry with any instructions of the
control packet for the forwarding node. The instructions dic-
tate how the forwarding node handles, e.g., routes, data pack-
ets 155 for the flow. For example, such instructions dictate
that forwarding node 120 is to forward data packets 155 to
forwarding node 130 using any applicable services. If the
forwarding node is unable to locate a matching entry, the
forwarding node adds or creates an entry in the flow table that
includes the instructions for the forwarding node as specified
by the received control packet and/or route path information
145 for the flow.

With control packet 150-1 having been generated, forward-
ing node 120 communicates control packet 150-1 to a next
network node of the route path. In this example, the next
network node of the route path is forwarding node 125.
Responsive to receiving control packet 150-1, forwarding
node 125 performs one or more operations. In block 325,
forwarding node 125 updates a flow table stored in memory
therein as described with reference to forwarding node 120.
The flow table stored within forwarding node 125 is updated
with any instructions included in the route path of control
packet 150-1 that indicate how forwarding node 125 is to
process data packets 155 of the flow. For example, the flow
table of forwarding node 125 is updated to indicate that data
packets 155 are to be forwarded to forwarding node 130 using
any applicable services.

Inblock 330, forwarding node 125 modifies control packet
150-1. For example, forwarding node 125 updates header
information of control packet 150-1 to indicate a next net-
work node of the route path. The modified version of control
packet 150-1 is control packet 150-2. In this example, the next
network node in the route path pictured is forwarding node
130. Forwarding node 125 communicates control packet
150-2 to forwarding node 130.

Responsive to receiving control packet 150-2, forwarding
node 130 performs one or more operations. In block 335,
forwarding node 130 updates a flow table stored in memory
therein. The flow table stored within forwarding node 130 is
updated with any instructions included in the route path of
control packet 150-2 that indicate how forwarding node 130
is to process data packets 155 of the flow. For example,
forwarding node 130 updates the internal flow table with
instructions dictating that data packets 155 are to be for-
warded to end node 135.

Forwarding node 120 sends data packets 155 of the flow
subsequent to sending control packet 150-1 to forwarding
node 125. While data packets 155 are shown to be sent from
forwarding node 120 after control packets propagate to for-
warding node 130, the ordering of communications shown is
not intended to be limiting. Still, no data packet 155 of the
flow is sent from forwarding node 120 until after the sending
of control packet 150-1. For example, forwarding node 120
may send data packets 155 immediately after sending control
packet 150-1. In another example, forwarding node 120 may
send data packets 155 responsive to the passing of a prede-
termined amount of time after sending control packet 150-1.

FIGS. 4A and 4B are block diagrams illustrating exem-
plary control packets. In the examples presented in FIGS. 4A
and 4B, the control packets are implemented or formatted as
User Datagram Protocol (UDP) packets. It should be appre-

10

15

20

25

30

35

40

45

50

55

60

65

10

ciated that any of a variety of different packet formats and/or
protocols may be used. UDP packets are only used for pur-
poses of illustration and not limitation. Further, FIGS. 4A and
4B illustrate examples in which the route path is specified in
the payload portion of each control packet. As noted, how-
ever, the payload portion may include data for the flow,
instructions, and/or other attributes for the flow. Further, the
route path may be specified by, or within, the control packet
using encapsulation rather than being included within the
payload portion of the control packet.

FIG. 4A is an exemplary illustration of control packet
150-1 as generated by forwarding node 120. Control packet
150-1 includes an Ethernet header portion, an IP header por-
tion, a transport header portion, and a payload portion. The IP
header portion specifies the source IP address (Src IP) of the
network node from which control packet 150-1 is sent and the
destination IP address (Dst IP) of the network node to which
control packet 150-1 is sent. The source IP address for control
packet 150-1 is the IP address of forwarding node 120 (IP,).
The destination IP address of control packet 150-1 is the IP
address of forwarding node 125 (IP,). The transport header
specifies the source port and the destination port to be used. In
this example, control packet 150-1 is identified by a unique
UDP port number of 40. Payload portion of control packet
150-1 includes an ordered list of the network nodes forming
the route path as determined by the SDN controller.

Forwarding node 125 examines the payload portion of
control packet 150-1. Forwarding node 125 updates the flow
table stored therein. As noted, forwarding node 125 searches
for an entry in the flow table having a flow identifier matching
the flow identifier of control packet 150-1. If forwarding node
125 locates a matching entry in the flow table, forwarding
node 125 updates the entry with any instructions including the
next network node in the route path that may be specified
within control packet 150-1. If forwarding node 125 is unable
to locate a matching entry in the flow table, forwarding node
125 creates an entry in the flow table for the flow. The instruc-
tions for the flow, as obtained from control packet 150-1, are
stored in the flow table entry that is created.

Forwarding node 125 identifies the next node of the route
path from the payload portion of control packet 150-1. For-
warding node 125 modifies control packet 150-1, thereby
generating control packet 150-2 of FIG. 4B. As pictured in
FIG. 4B, forwarding node 125 has updated the source IP
address and the destination IP address of control packet 150-
2. More particularly, forwarding node 120 has updated the
source IP address to 1P, and the destination IP address to IP;,
corresponding to forwarding node 125 and forwarding node
130, respectively. Forwarding node 125 sends control packet
150-2 to forwarding node 130.

Responsive to receiving control packet 150-2, forwarding
node 130 examines the payload portion of control packet
150-2. Forwarding node 130 updates the flow table stored
therein as previously described. Forwarding node 130 also
identifies the next node of the route path from the payload
portion of control packet 150-2. Forwarding node 130 deter-
mines that the next network node is end node 135. As such,
forwarding node 130 does not modify and/or send control
information to end node 135.

Inthe case where control packet 150-2 includes data within
the payload portion, however, forwarding node 130 may gen-
erate a data packet having the data included therein which
may be sent to end node 135. In another aspect, forwarding
node 130 may update the IP header of control packet 150-2
and forward the modified version of control packet 150-2 to
end node 135 so that end node 135 may extract the data.

US 9,407,541 B2

11

Accordingly, with control packets traversing the route path
as described, each forwarding node is configured with the
appropriate instructions for handling data packets of the flow.
Each such data packet will have a flow identifier that may be
matched to the instructions stored within an entry in the flow
table of each respective forwarding node.

Though not illustrated in FIG. 4, in another aspect, the
payload of the control packet may include a hop counter data
field. The hop counter data field may be used by a forwarding
node to quickly determine the offset within the control packet
and/or payload of the control packet to determine the next
network node ofthe route path. Each forwarding node, as part
of modifying the IP header information, would also update
the hop counter data field prior to sending the modified con-
trol packet to the next network node.

Insstill another aspect, forwarding nodes may be configured
to strip or remove any information from the control packet
that was utilized by a prior forwarding node or a prior network
node. In that case, each forwarding node would remove those
network nodes, or hops, from the payload portion of the
control packet that were visited. As such, upon receipt of a
control packet, each forwarding node need only check a same,
fixed location within the packet to determine the next network
node of the route path. For example, control packet 150-3,
being sent from forwarding node 125 to forwarding node 130,
would have a payload with only end node 135 specified for the
route path since each other network node was traversed.

In some cases, the flow policy propagation techniques
described within this disclosure may be augmented to accom-
modate network nodes having the capability to change the
route path of the flow referred to as a “decision making
network node.” A firewall is an example of a decision making
network node. A firewall, for example, may decide that a
certain flow and/or packet of a flow should be forwarded
through an intrusion detection system, blocked, or otherwise
diverted from the route path. In such cases, the SDN control-
ler may determine a conservative route path that avoids the
decision making network node or provide a route path up to,
and ending at, the decision making network node. In each
case, forwarding nodes up to the decision making network
node are updated. The decision making network node may
modify the route path specified within the existing control
packet that is received or request a remaining portion of a path
from the SDN controller, where the remaining portion of the
route path is from the decision making network node to the
end node.

The example provided above for a decision making net-
work node is applicable to situations where the decision mak-
ing network node makes decisions based upon n-tuple infor-
mation of the control packet, where “n” is an integer value,
e.g., 5. In cases where the decision making network node is
able to inspect the payload of the control packet, the decision
making network node also must be able to read and/or access
header information for the packet. In such cases, the control
packet may be augmented so that header information of the
control packet is also included or incorporated into the pay-
load portion of the control packet and, thereby available for
inspection from a decision making network node configured
to inspect payloads.

FIG. 5is a flow chart illustrating an exemplary method 500
of propagating a flow policy in an SDN. Method 500 may be
implemented by the SDN controller as described within this
disclosure. In block 505, the SDN controller receives a route
path request for a flow from a forwarding node of the SDN.
The forwarding node from which the route path request is
received may be a first forwarding node, or one connected to
aclient that is initiating a flow to another client. The route path

10

15

20

25

30

35

40

45

50

55

60

65

12

request may specify the start node and the end node for the
flow. In another aspect, the route path request may specify one
or more requested services to be applied or used for the flow.

Inblock 510, responsive to the route path request, the SDN
controller determines route path information for the flow. The
route path information may specify the start node, the end
node, and one or more forwarding nodes. The route path
information further may specify information to be used by the
forwarding nodes in processing the flow such as one or more
services to be applied to packets of the flow and/or instruc-
tions for handling packets of the flow. The route path infor-
mation may specify the aforementioned data on a per-for-
warding node basis.

In block 515, the SDN controller communicates the route
path information to the forwarding node. The route path infor-
mation is communicated only to the forwarding node that
issued the route path request. The route path information is
not sent from the SDN controller directly to any other for-
warding node of the route path. Rather, the route path infor-
mation propagates as one or more control packets from one
forwarding node to the next in accordance with the ordered
list of forwarding nodes specified therein.

FIG. 6 is a flow chart illustrating another exemplary
method 600 of propagating a flow policy in an SDN. Method
600 may be implemented by a forwarding node as described
within this disclosure. In block 605, the forwarding node
sends a route path request for a flow to the SDN controller of
an SDN. As noted, the forwarding node may send the route
path request responsive to a client initiating a flow. In block
610, the forwarding node receives route path information for
the flow from the SDN controller. In block 615, the forward-
ing node generates a control packet specifying the route path.
In another aspect, one or more items or the entirety of the
route path information is included or specified by the control
packet generated by the forwarding node.

In block 620, the forwarding node updates an internally
stored flow table. The flow table is used to store entries
indicating how to process different flows. For example, each
entry corresponds to one flow that his being handled or pro-
cessed by the forwarding node. Responsive to receiving the
route path information, the forwarding node determines the
flow identifier from the received route path information. The
forwarding node determines whether the internally stored
flow table includes an entry having a flow identifier matching
the flow identifier determined from the received route path
information. If so, the matching entry is updated in accor-
dance with the route path information for the forwarding
node. If not, an entry is created specifying route path infor-
mation for the forwarding node.

In block 625, the forwarding node communicates the con-
trol packet to the next, e.g., or second, forwarding node in the
route path. As discussed, responsive to receiving the control
packet, the second forwarding node updates the internally
stored flow table. If a third forwarding node beyond the sec-
ond forwarding node is specified by the route path informa-
tion, the second forwarding node modifies the control packet
for sending to the third forwarding node. Forwarding nodes
continue to update internal tables and communicate a control
packet to the next forwarding node until the last forwarding
node of the route path is reached. After updating the flow table
in each forwarding node as described herein, each forwarding
node of the route path is configured to forward data packets
from one endpoint of the flow to the other.

The inventive arrangements disclosed within this specifi-
cation provide flow policy propagation techniques in which
the flow table entries of the forwarding nodes along the route
path of the flow are updated prior any of the forwarding nodes

US 9,407,541 B2

13

receiving data packets of the flow for processing. As such,
per-flow consistency is guaranteed and out of order data pack-
ets for the flow are avoided. In addition, the control plane load
is reduced since flow table entries are sent over the data plane
as opposed to the control plane of the SDN. Further, the flow
policy propagation technique(s) described within this disclo-
sure guarantee that only necessary flow table entries are cre-
ated in the forwarding nodes along the route path of the flow
that is computed.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or

15

25

40

45

14

entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

US 9,407,541 B2

15

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,”“an,” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used in this disclo-
sure, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components, and/or groups
thereof.

Reference throughout this disclosure to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment described within this disclosure. Thus, appear-
ances of the phrases “in one embodiment,” “in an embodi-
ment,” and similar language throughout this disclosure may,
but do not necessarily, all refer to the same embodiment.

The term “plurality,” as used herein, is defined as two or
more than two. The term “another,” as used herein, is defined
as at least a second or more. The term “coupled,” as used
herein, is defined as connected, whether directly without any
intervening elements or indirectly with one or more interven-
ing elements, unless otherwise indicated. Two elements also
can be coupled mechanically, electrically, or communica-
tively linked through a communication channel, pathway,
network, or system. The term “and/or” as used herein refers to
and encompasses any and all possible combinations of one or
more of the associated listed items. It will also be understood
that, although the terms first, second, etc. may be used herein
to describe various elements, these elements should not be
limited by these terms, as these terms are only used to distin-
guish one element from another unless stated otherwise or the
context indicates otherwise. The term “if” may be construed
to mean “when,” “upon,” “in response to [a stated condition or
operation|,” or “responsive to [a stated condition or opera-
tion]” depending on the context.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. A method, comprising:

receiving, from a first forwarding node of a software
defined network, a route path request for a flow;

responsive to the route path request, determining route path
information specifying a route path for the flow using a
processor of a software defined network controller; and

communicating the route path information from the soft-
ware defined network controller only to the first for-
warding node,

wherein the route path information is adapted to be used by
the first forwarding node to generate a control packet
comprising the route path, the control packet to be com-
municated to a second forwarding node of the route path;

10

15

20

25

30

35

40

45

50

60

65

16

wherein the second forwarding node comprises a flow table
and, responsive to receiving the control packet, the sec-
ond forwarding node updates the flow table according to
the control packet, and

wherein the second forwarding node modifies the control

packet for sending to a third forwarding node of the route
path and sends the control packet to the third forwarding
node.

2. The method of claim 1, wherein the route path request
specifies a start node and an end node.

3. The method of claim 1, wherein the route path informa-
tion further specifies a service to be applied to the flow.

4. The method of claim 1, wherein the control packet is
communicated from the first forwarding node to the second
forwarding node using a data plane of the software defined
network without intervention from the software defined net-
work controller.

5. The method of claim 4, wherein the first forwarding node
sends the control packet to the second forwarding node prior
to communicating any other packet of the flow to the second
forwarding node.

6. A method, comprising:

sending a route path request for a flow from a first forward-

ing node to a software defined network controller of a
software defined network;

receiving route path information specitying a route path for

the flow from the software defined network controller;
generating, using a processor of the first forwarding node,
a control packet comprising the route path; and
communicating the control packet from the first forward-
ing node to a second forwarding node;
wherein the second forwarding node comprises a flow table
and, responsive to receiving the control packet, the sec-
ond forwarding node updates the flow table according to
the control packet, and

wherein the second forwarding node modifies the control

packet for sending to a third forwarding node of the route
path and sends the control packet to the third forwarding
node.

7. The method of claim 6, wherein the control packet is
communicated from the first forwarding node to the second
forwarding node over a data plane of the software defined
network without intervention from the software defined net-
work controller.

8. The method of claim 6, wherein the control packet is sent
from the first forwarding node to the second forwarding node
prior to communicating any other packet of the flow to the
second forwarding node.

9. The method of claim 6, wherein the first forwarding node
comprises a flow table and, responsive to receiving the route
path information, updates the flow table; and

wherein the first forwarding node processes a data packet

of the flow according to the updated flow table.

10. A system, comprising:

a processor programmed to initiate executable operations

comprising:

sending a route path request for a flow from a first forward-

ing node to a software defined network controller of a
software defined network;

receiving route path information specitying a route path for

the flow from the software defined network controller;
generating a control packet comprising the route path; and
communicating the control packet from the first forward-
ing node to a second forwarding node;

US 9,407,541 B2

17

wherein the second forwarding node comprises a flow table
and, responsive to receiving the control packet, the sec-
ond forwarding node updates the flow table according to
the control packet, and

wherein the second forwarding node modifies the control

packet for sending to a third forwarding node of the route
path and sends the control packet to the third forwarding
node.

11. The system of claim 10, wherein the control packet is
communicated from the first forwarding node to the second
forwarding node over a data plane of the software defined
network without intervention from the software defined net-
work controller.

12. The system of claim 10, wherein the control packet is
sent from the first forwarding node to the second forwarding
node prior to communicating any other packet of the flow to
the second forwarding node.

13. The system of claim 10, wherein the first forwarding
node comprises a flow table and, responsive to receiving the
route path information, updates the flow table; and

wherein the first forwarding node processes a data packet

of the flow according to the updated flow table.

14. A non-transitory computer program product compris-
ing a computer readable storage medium having program
code stored thereon, the program code executable by a pro-
cessor to perform a method comprising:

sending a route path request for a flow from a first forward-

ing node to a software defined network controller of a
software defined network using a processor of the first
forwarding node;

10

20

25

30

18

receiving route path information specitying a route path for
the flow from the software defined network controller
using the processor of the first forwarding node;

generating a control packet comprising the route path using
the processor of the first forwarding node; and

communicating the control packet from the first forward-
ing node to a second forwarding node using the proces-
sor of the first forwarding node;

wherein the second forwarding node comprises a flow table

and, responsive to receiving the control packet, the sec-
ond forwarding node updates the flow table according to
the control packet, and

wherein the second forwarding node modifies the control

packet for sending to a third forwarding node of the route
path and sends the control packet to the third forwarding
node.

15. The computer program product of claim 14, wherein
the control packet is communicated from the first forwarding
node to the second forwarding node over a data plane of the
software defined network without intervention from the soft-
ware defined network controller.

16. The computer program product of claim 14, wherein
the control packet is sent from the first forwarding node to the
second forwarding node prior to communicating any other
packet of the flow to the second forwarding node.

17. The computer program product of claim 14, wherein
the first forwarding node comprises a flow table and, respon-
sive to receiving the route path information, updates the flow
table; and

wherein the first forwarding node processes a data packet

of the flow according to the updated flow table.

#* #* #* #* #*

